AGS/AD/AGS Studies Report No. 313

03 May 1994

Study Period: 10 April 1994, 9:00 am - 21:00 pm

Participants: R. Thern, M. Tanaka, E. Bleser + MCR

MCR: N. Williams / K. Zeno, P. Carolan / C. Whalen

Reported by : M. Tanaka

Machine: AGS_ Accel. on h=8

Beam: User3, low intensity 3 x 1012 ppp, No chromaticity corrections

Tools: IPM, Orbit PUE's, Tune Meter, HP5371A Frequency Analyzer
Gauss Clock.

Aim: To Measure Op and h*frey vs <x>pue, X(c5)ipm at various

times
I. Introduction

During the machine studies[MS] period in March and early. April, we observed substantial large closed
orbit distortions throughout the AGS cycle, which varied from -28 mm to +16 mm, peaking around
E20[L. Ahrens]. Therefore, previous to this study a few selected main magnets were moved as the first
step to reduce the orbit distortions [E. Bleser]. The main purposes of this study are as follows:

» to get AGS orbit data for the next magnet move,
* to measure the mean radius <x>pye = <R> from PUE's and x(c5) from IPM for calibration,

» to measure d{h*frey)/d<x> and the chromaticity En = AQh/(Ap/p),

at various times and radius, and to compare the results with MAD predictions to understand the basic
machine performance.

IL Setup and Data Taking

The stored commands for the FY94/SEB setup were reloaded and executed after recovering the
polarized proton MS. The data were taken at 4 different times as shown in figure 1:

Data#l at t = 0.7 s from to, p = 2.632 GeV/c (from Gauss clock counts by IPM)T’
Data#2 att=1.1s, p= 4.278 GeV/c,
Data#3 att=1.5s, p=16.942 GeV/c,
Data#4 att=1.7 s, p=21.926 GeV/c.

1 p=2.33 +0.00050568*GC [GeV/c]
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[Fig.1. AGS main magnet setup. |

During the data taking, high field chromaticity sextupoles were turned off to minimize possible

non-linear effects. The circulating beam intensity was 2-3.1012 ppp. This note analyzes the two
after_transition data sets #3 and #4 since these sets are more complete and reliable than #1 and #2. e.g.,
we started loosing some of the beam when <x>pye < -10 mm or ~> +5 mm at t = 0.7 s and had a
difficulty with tune measurements.

t=1.5s, <x>=2.59 mm

AGS Orbit, 10.Apr.94 2126

[Fig.2. A typical AGS Orbit at t =1.5 s during this MS. |

Figure 2 shows a typical AGS orbit during the MS. All the <x>pye values and its errors were
recalculated by removing apparent bad PUE's from a single pulse measurement.



# PUE's are located at straight sections 2,4,8,12,14,18 where By and Dy are at average while IPM is
located at straight section C5 where Bx and Dy are at maximum. There were ~62 good ones out of 70
PUE's.

# 1t should be noted that the peak-to-peak variation was reduced by about 50 % to £ ~13mm from the
unwanted orbit distortions before the MS. This value is still substantially high since the ideal orbit
should be less than + 3-5 mm. Two extreme points in superperiod K are likely due to unstable PUE's.

The mean beam radius <x> was varied from about -13 mm to +7 mm by changing the voltage of
the radial shifter [RS] as shown in figure 3. -

<x> = (-36.2%£1.7)+(7.7+£0.4)*RS[V] at t=1.5 s

= (-32.5%£2.0)+(6.9+0.5)*RS[V] at t=1.7 s
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HI. Results and Analysis

“ All results are summarized in figures 3, 4 and 5 with MAD predictions using the momentum from the
gauss clock counts and actual high field quads currents {IQp, IQv} = {100A, 150A}. The <x>mad is
calculated by

<x>mad = AR = op-R-(Ap/p),

where oip is the compaction factor and R = 128.452 m. is the reference mean radius of the AGS. The
h*frey is calculated by

. b¥frey =8c/E)QnR+AR)),
- where h = 8, the rf harmonic number, ¢ = speed of light and p/R = B¢},



IILA <x>pye vs X(c5)ipm

x(c5) = (5.75 £ 0.38)+(0.99£0.05)*<x>pue

0.04 + 1.14*<x>mad
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(Fig.3. x(C5) vs <x> with MAD predictions at p = 16.942 and 21.926 GeV/c. |

Figure 3 shows the results from the PUE's and the IPM. It displays a linear relationship between
x(cS)ipm and <x>pye, If the x(c5)ipm = 0 corresponds to the central orbit, the central orbit mean
radius is at the <x>pye =-5.3 £ 0.3 mm. The MAD predicted value of dx(c5)ipm/d<x>pye is in
excellent agreement with the data at p=21.926 GeV/c but in poor agreement with one at p=16.942
GeV/e.

% It is generally assumed that <x>pye = -4.0 mm corresponds to the central orbit mean radius.



III.B h*frev VS <X>pue

frevth = (2.967200+0.000017)-(0.0000176+0.0000018)*<x>

= 2.96705 -0.0000180*<x>mad
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[ Fig.4. h¥frey vs <x> with MAD predictions. |

The MAD predictions of d(h*frev)/d<x> are in excellent agreement with both data. Some of the
absolute differences in h*frev(~100-240 Hz), could be attributed to the systematic errors in calculating the
momentum from Gauss clock counts by 0.5-1.0 %. The Gauss clock calibration could be wrong by 1.8 %
[M. Brennan].



II.C Qn vs dp/p
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[Fig.5. Qn vs dp/p with MAD predictions. |

Fig. Sa.

Fig. 5b.

Figure 5a and 5b show Qp vs dp/p at p=16.942 and 21.926 GeV/c, respectively, where dp/p =
<x>f(0p-R). The measured Qy value stays constant to be 8.83 + 0.01 while the MAD predicts Qv =
8.82 £ 0.03. Big circles for measured Qp, indicate that we had some difficulties in measuring Qp_ In
the FFT display, there were several broad peaks between 8.5 and 9.0 and each peak had its
substructure. At p = 21.926 GeV/c, the measured chromaticity & = 21.0 is in good agreement with the
MAD prediction of 22.5 but not for the p=16.942 GeV/c data.



IV. Conclusions

» The two data sets on the horizontal tune[Qp] and the 1f frequency [h*frey] vs the mean
radius[<x> < £ 10 mm] at p = 16.942 and 21.926 GeV/c with low intensity proton beam
without chromaticity corrections were analyzed and compared with the MAD predictions.

» Despite the fact that the machine was not well tuned yet and we had some difficulties in
measuring tunes, the data indicate that the AGS behaved linearly as expected.

» It would be interesting to perform similar measurements at the following conditions:

-at the well-tuned machine,

-at higher momentum(e.g., 25, 27, 29 GeV/c)

-with higher intensity beam(e.g., 10, 20, 30 TP),

-using well prepared and calibrated tools,

-increasing the radial steering range from +10 to 25 mm (and beyond untill beam losses
occur), :

-with chromaticity sextupoles off and on,

-also measuring the transverse beam emittance and the momentum spread,

-etc,

and knowing the machine conditions well (e.g., Yy—jump, VHF, transverse damper, bumps
etc.)




